# COMP 364 (3 Credits) – Computer Tools for Life Science Fall 2017 McGill University

### Syllabus

#### **Course description:**

Introduction to computer programming in a high level language: variables, expressions, types, functions, conditionals, loops, objects and classes. Introduction to algorithms, data structures (lists, strings), modular software design, libraries, file input/output, debugging. Emphasis on applications in the life sciences.

### List of life science topics used as examples:

- Central dogma of molecular biology
- RNA and/or protein structure prediction
- Genome sequencing and analysis
- Biological networks
- Evolution
- Epigenetics
- Biomarker discovery
- Biosystems dynamics
- Cell and biomedical imaging
- Modeling

### **Objectives:**

By the end of this course, students will be able:

- 1) Design and describe precise, unambiguous instructions that can be used [by a computer] to solve a problem or perform a task;
- 2) Translate these instructions into a language that a computer can understand (Python);
- **3)** Write programs that solve complex problems (especially those arising in Life Sciences) by decomposing them into simpler subproblems;
- 4) Apply programming-style and structure conventions to make your programs easy to understand, debug and modify;
- 5) Learn independently about new programming-language features and libraries by reading documentation and by experimenting.

**Prerequisites:** BIOL 112 and A CEGEP level mathematics course

**Restrictions:** Only one of COMP 204, COMP 202 and COMP 208 can be taken for credit. COMP 204 cannot be taken for credit with or after COMP 250, COMP 206, or COMP 364.

## Instructors:

Christopher John Frederick Cameron : <u>christopher.cameron@mail.mcgill.ca</u> Carlos Oliver: <u>carlos.gonzalezoliver@mail.mcgill.ca</u>

Course Webpage: <u>http://cs.mcgill.ca/~cgonza11/COMP\_364/</u>

**Teaching Assistants:** No TAs are available for this course.

Location: Education Building, Room 216

Lecture format: 3 x 50 minutes of lectures per week (MWF).

### Additional tutorials:

- 1. Installation of Python on laptop computers
- 2. Unix environment: File system organization and basic commands

# **Textbook:** How to Think Like a Computer Scientist: Interactive Edition (Python)

http://interactivepython.org/courselib/static/thinkcspy/index.html#

## Student evaluation:

Assignments: 35% (5 assignments worth 7% each) Quizzes: 5% (5 quizzes worth 1% each) Midterm exam: 20% Final exam: 40%

### Assignments:

5 Python programming assignments, each aiming at addressing a specific biological question.

# Lecture schedule

| Lecture | Computer science topic                                                                |
|---------|---------------------------------------------------------------------------------------|
| 1       | Thinking algorithmically                                                              |
| 2       | What is a computer: CPU, RAM, storage, communication.<br>Binary numbers, instructions |
| 3       | Python programming: What is code? How write code? How to run it? Basic programs       |
| 4       | Python programming: variables and types. Program execution.                           |
| 5       | Python programming: Control flow: conditionals, boolean expressions                   |
| 6       | Python programming: Lists                                                             |
| 7       | Python programming: Control flow: for loops, while loops                              |
| 8       | Putting it together: Nested loops and conditionals                                    |
| 9       | Python programming: Tracing program, debugging                                        |
| 10      | Python programming: Debugging using a debugger (pdb)                                  |
| 11      | Program organization: functions, encapsulation, execution flow, variable scope        |
| 12      | Program organization: function parameters and return values. Composition.             |
| 13      | Python programming: Dictionaries                                                      |
| 14      | Putting it together – part I: Combined use of functions, loops, and lists.            |
| 15      | Putting it together - part II: Advanced examples; Commenting code                     |
| 16      | Algorithm design: Linear and Binary Search                                            |
| 17      | Algorithm design: Selection Sort and InsertionSort                                    |
| 18      | Review session                                                                        |
| 19      | Midterm exam                                                                          |
| 20      | Python programming: File IO, internet IO                                              |
| 21      | Object-oriented programming: Modules, Classes, and Objects                            |
| 22      | Object-oriented programming: Modules, Classes, and Objects                            |
| 23      | Object-oriented programming: Modules, Classes, and Objects                            |

| <ul> <li>24 Python libraries; How to read and use an API</li> <li>25 Using libraries: Data visualization with MatPlotLib</li> <li>26 Using libraries: Data visualization with MatPlotLib</li> <li>27 Building complex programs using BioPython</li> <li>28 Biological data analysis with BioPython: Sequence analysis</li> <li>20 Dialogical data analysis with DiaPython melagular structures</li> </ul> |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 26Using libraries: Data visualization with MatPlotLib27Building complex programs using BioPython28Biological data analysis with BioPython: Sequence analysis                                                                                                                                                                                                                                              |         |
| <ul> <li>27 Building complex programs using BioPython</li> <li>28 Biological data analysis with BioPython: Sequence analysis</li> </ul>                                                                                                                                                                                                                                                                   |         |
| 28   Biological data analysis with BioPython: Sequence analysis                                                                                                                                                                                                                                                                                                                                           |         |
|                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| 20 Dielegiest date analyzig with DieDythem, melegyler structures                                                                                                                                                                                                                                                                                                                                          |         |
| 29 Biological data analysis with BioPython: molecular structures                                                                                                                                                                                                                                                                                                                                          |         |
| 30 Notions of machine learning                                                                                                                                                                                                                                                                                                                                                                            |         |
| 31 Intro to machine learning with scikit-learn                                                                                                                                                                                                                                                                                                                                                            |         |
| 32 Intro to machine learning with scikit-learn                                                                                                                                                                                                                                                                                                                                                            |         |
| 33 Notions of image processing                                                                                                                                                                                                                                                                                                                                                                            |         |
| 34 Introduction to image analysis with scikit-image                                                                                                                                                                                                                                                                                                                                                       |         |
| 35 Introduction to image analysis with scikit-image                                                                                                                                                                                                                                                                                                                                                       |         |
| 36 Toward other programming languages. Compiled vs interpreted lan                                                                                                                                                                                                                                                                                                                                        | nguages |
| 37 Toward other programming languages. Static vs dynamic typing                                                                                                                                                                                                                                                                                                                                           |         |
| 38 Review session                                                                                                                                                                                                                                                                                                                                                                                         |         |

### Right to submit in English or French written work that is to be graded:

In accord with McGill University's Charter of Students' Rights, students in this course have the right to submit in English or in French any written work that is to be graded.

### Academic Integrity statement:

McGill University values academic integrity. Therefore all students must understand the meaning and consequences of cheating, plagiarism and other academic offences under the Code of Student Conduct and Disciplinary Procedures (see <a href="https://www.mcgill.ca/students/srr/">www.mcgill.ca/students/srr/</a> honest/ for more information).